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Abstract
Fractal growth patterns can be observed during the formation of the liquid
crystalline B2 phase of a bent-core molecule from the isotropic melt. The time
development of the box dimension Db, the information dimension Di and the
mass dimension Dm was determined during the phase ordering process, as the
cell gap, quench depth and quench rate was varied. The fractal dimensions
obtained for various growth patterns were of the order of D ≈ 1.82–1.89 in
a two-dimensional medium, values which are generally found for percolation
clusters in condensed matter systems. The fractal dimension increases for
increasing cell gap, but is basically independent on quench depth and rate.

1. Introduction

Since the introduction of fractal geometry by Mandelbrot [1] in the early 1980s, this concept
has been successfully employed in the description of various processes of pattern formation
in most areas of science, ranging from physics, chemistry and biology to material science,
engineering and geology [2]. This includes growth processes of various condensed matter
systems, aggregation and percolation systems, viscous fingering and dielectric breakdown
patterns, as well as electro-deposition or surfaces and interfaces. Fractal geometry is especially
useful in the description of disordered systems, percolation and branched growth patterns [3].
Thus it is surprising, that there are only very few investigations reported for liquid crystalline
and related systems. One such report is related to an estimation of the fractal dimension of a
dendritic-type texture of a discotic columnar hexagonal ordered phase [4], which bears a certain
similarity to patterns formed in viscous fingering, i.e. the Saffman–Taylor instability studied in
Hele–Shaw cells of liquid crystals [5–8], although in the latter case the observed structures are
not related to a phase ordering process. Other investigations describe a fractally homogeneous
distribution of nuclei [9] and topological defects [10, 11] in nematic liquid crystals.
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Growth structures with a fractal dimension may be obtained by different mechanisms.
Two models account for a large number of systems observed in condensed matter, percolation
and diffusion-limited aggregation [12]. In percolation systems, clusters are formed by sites
being occupied with a certain probability, growth depending on local interactions. Percolation
clusters in two-dimensional space are found to exhibit a fractal dimension of the order of
D = 1.89 at the percolation threshold. In the case of diffusion-limited aggregation, small beads
or clusters are initially formed, which diffuse randomly, before they interact to form aggregates
of larger size (cluster–cluster aggregation). These are generally more highly branched and
exhibit a fractal dimension of the order of D = 1.7 in two-dimensional space, often found for
aggregation processes of colloidal systems.

In this study, the fractal dimensionality of growth structures, formed during the phase
ordering process of a liquid crystal phase after a temperature quench from the isotropic
melt, is investigated for a bent-core or so called ‘banana’-molecule. The observed patterns
are qualitatively different from those of ‘conventional’ calamitic mesogens, which generally
exhibit spherical or bâtonnet growth of nematic or smectic nuclei, respectively.

2. Experiment

The compound under investigation was first reported in [13] and has a structural formula as
given below:

Phase transition temperatures (in ◦C) were determined by polarizing microscopy on very slow
cooling: Iso. 169.6 B2 150.3 BX 145.5 Cryst. The compound shows a two-phase region of
about 3 K at the isotropic to liquid crystal transition, which is quite common for banana-
mesogens and may be attributed to impurities. The clearing point TC (Iso.–B2) was taken as
that temperature where first liquid crystalline nuclei were observed on slow cooling.

Growth patterns were studied by use of polarizing microscopy (Nikon OPTIPHOT2-
POL), equipped with a Mettler FP52 hot stage for temperature control better than 0.1 K.
Digital images were recorded with imaging software from Bergström Instruments AB and a
microscope mounted digital video camera (Sony Hyper HAD model SSC-DC38P) at an image
size of 768 × 576 pixels. For maximum contrast between the isotropic and the B2 phase the
camera was driven in slight intensity overload. This procedure assured conversion of digital
images without loss of the structural features.

For the investigations, the compound was introduced into commercially available liquid
crystal sandwich cells (EHC, Japan) by capillary action in the isotropic phase. General
experimental conditions were as follows: image size 1080 µm × 820 µm (corresponding
to 768 × 576 pixels), cell gap d = 3 µm, quench depth 
T = 0.3 K and quench rate
R = 3 K min−1. For the different investigation series only the respective parameter was
varied, leaving other conditions unchanged.

Fractal image analysis was carried out with BENOIT 1.3 (Trusoft-International) using
several methods.
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(1) The box dimension method. This defines the fractal dimension Db from the exponent in
the proportionality

N(d) ∼ 1

dDb
(1)

with N(d) the number of boxes of size d being occupied by the data set.
(2) The information dimension method. The fractal dimension Di is given from the

proportionality

I (d) ∼ −Di log(d) (2)

with I (d) the information entropy of N(d) boxes of size d, given by

I (d) = −
N(d)∑

i=1

mi log(mi) (3)

with mi = Mi/M , where Mi is the number of points in the ith box and M the number
of total points in the data set. In contrast to the box dimension method, the information
dimension method weights the boxes according to the number of points contained.

(3) The mass dimension method, which yields the fractal dimension Dm, following the
proportionality

m(r) ∼ rDm (4)

with m(r) = M(r)/M the ‘mass’ within a circle of radius r , where M(r) is the data set
of points contained within a circle and M the total number of points in the set.

The fractal dimension was in each case determined by minimization of the standard
deviation of a linear fit to a log–log plot according to equations (1), (2) and (4) to SD < 0.001.
For each procedure, the box/radius size was varied over more than two orders of magnitude,
resulting in a variation of the dependent variable over more than four orders of magnitude. The
linear regime from which the fractal dimensions were determined covered at least one decade
in box/radius size.

3. Experimental results and discussion

Figure 1 depicts a typical growth evolution of the liquid crystal B2 phase (bright) from the
isotropic liquid (black), with images taken every 10 s apart. Images were recorded at isothermal
conditions after a temperature quench to 
T = 0.3 K below the clearing point for a cell of
gap d = 3 µm. During the phase ordering process, only a few clusters are formed, which
grow and eventually coalesce into larger aggregates. Analysing the images of figure 1, the
fractal dimension of individual clusters was found to be constant within the limits of error and
equal to the dimension determined for the whole microscopic texture, as shown in figure 2.
Coalescence of isolated clusters did not change their fractal dimension. These observations,
together with a value of D ≈ 1.83, suggests that the growth of the liquid crystalline B2 phase
from the isotropic melt is accomplished by percolation clusters, rather than diffusion-limited
aggregation.

For the following investigations, the whole microscopic field of view (1080 µm×820 µm,
corresponding to 768 × 576 pixels resolution) was used for fractal dimensional estimation. A
set of illustrative data of the fractal analysis of figure 1(f) is shown in figure 3 for (a) the box
dimension method, (b) the information dimension method and (c) the mass dimension method.
All methods yield comparable results: Db = 1.85, Di = 1.83 and Dm = 1.86. In all cases,
the fractal dimension was determined for a variation of the box/radius size dimension by more
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Figure 1. Exemplary series of fractal growth patterns at isothermal conditions at quench depth

T = 0.3 K in a d = 3 µm cell. The image size is 1080 µm × 820 µm each, taken at time
intervals of 10 s.

than one order of magnitude, corresponding to at least two orders of magnitude on the scale
of occupied boxes/points within the circle.

Figure 4(a) shows the time development of the fractal box dimension Db for several
cell gaps. A clear increase of Db with time can be observed for all cell gaps in the interval of
2 µm < d < 15 µm until a saturation dimension D < 2 is reached. The saturation value of the
fractal dimension, obtained by all three different methods employed, increases for increasing
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Figure 2. Fractal dimension of different B2 clusters (squares, circles) as a function of time of
isothermal phase ordering, including coalescence of individual clusters (squares, t > 30 s), in
comparison with an analysis of the whole texture (up triangles), observed during growth of the
liquid crystalline B2 phase from the isotropic melt. Fractal analysis is referring to the image series
depicted in figure 1.

cell gap below d = 8 µm (figure 4(b)). Above a cell gap of approximately 8 µm, a constant
fractal dimension is observed, possibly indicating a vanishing influence of the substrates on
the liquid crystal phase ordering process.

Figure 5(a) illustrates the time development of the fractal box dimension for different
quench depths 
T below the Iso.–B2 transition at constant cell gap d = 3 µm and quench
rate R = 3 K min−1. Also here, a strong increase of Db with values of the order of D = 1.6
for short times can be observed with time, until saturation is reached after approximately
1 min at isothermal conditions with D ≈ 1.87. Possibly, this behaviour might illustrate a
change from growth below the percolation threshold at short times, for which D = 1.56 is
obtained theoretically, to one at the percolation threshold at longer times, for which d = 1.89 is
predicted. For increasing quench depth the saturation value of the fractal dimension is obtained
at shorter times. This is accounted for by the well known fact that the phase ordering process
proceeds more quickly at larger super-cooling. A more detailed account of the saturation
fractal dimension as a function of quench depth is given in figure 5(b) for all three methods
employed. Within the limits of error, the fractal dimension remains constant at a value of
approximately D ≈ 1.87, as the quench depth 
T is increased. This implies that the observed
growth structures are basically independent on growth velocity.

In a third series, the fractal dimension of the B2 growth structures was investigated as a
function of quench rate R at constant cell gap d = 3 µm and quench depth 
T = 0.3 K.
Intuitively, one would expect that the quench rate does not have any influence on the phase
ordering process, as long as this proceeds at isothermal conditions. The time development of
Db is depicted in figure 6(a). At large quench rates R > 3 K min−1 and short times t < 15 s,
smaller fractal dimensions are obtained as compared to moderate quench rates. This might
be attributed to an insufficient electronic temperature regulation for large cooling rates, not
imposing isothermal conditions at all times of the phase ordering process. In any case, the
saturation value of the fractal dimension, as determined by all three methods employed, is
independent of quench rate (figure 6(b)), as expected, and of the order of D ≈ 1.88.

For all investigation series, phase ordering of the B2 phase of the bent-core mesogen was
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Figure 3. Exemplary illustration of the determination of the fractal dimension by minimization
of the standard deviation of data obtained for the image of figure 1(f): (a) box dimension method,
(b) information dimension method and (c) mass dimension method.

accomplished by the formation of only a few nuclei, which grow in a complex fashion, leading
to clusters with an average fractal dimension of the order of D ≈ 1.87. Under no conditions the
transition was accomplished by coalescence of numerous small ‘islands’, forming complex
aggregates. In general, the observed behaviour suggests a growth process via percolation
clusters rather than diffusion-limited aggregation, although also a growth process via clustering
aggregation, which may lead to similar fractal dimensions, cannot be completely ruled out.
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(a) (b)

Figure 4. (a) Time development of the fractal box dimension Db for several different cell gaps d.
(b) Dependence of the saturation fractal dimension D on cell gap, determined by different methods
(�: box dimension Db , �: information dimension Di , �: mass dimension Dm).

(a) (b)

Figure 5. (a) Time development of the fractal box dimension Db for several quench depths 
T .
(b) Dependence of the saturation fractal dimension D on quench depth, determined by different
methods (�: box dimension Db , �: information dimension Di , �: mass dimension Dm).

4. Conclusions

The evolution of growth structures during the phase ordering process of the liquid crystalline
B2 phase of a bent-core molecule from the isotropic melt was studied by determination of
the fractal dimension by different methods. The observed growth structures are qualitatively
different from those of conventional calamitic mesogens and characteristic for the so called
‘banana’-phases. It was demonstrated that different liquid crystalline clusters have the same
fractal dimension, which is not changed by coalescence of clusters either. Fractal growth is
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(a) (b)

Figure 6. (a) Time development of the fractal box dimension Db for several quench rates R.
(b) Dependence of the saturation fractal dimension D on quench rate, determined by different
methods (�: box dimension Db , �: information dimension Di , �: mass dimension Dm).

influenced by the dimension of the sample, exhibiting an increasing fractal dimension as the
cell gap is increased below d = 8 µm, while quench depth and quench rate have practically
no influence on the dimension of the aggregates observed. Microscopic observation of the
growth structures and their average fractal dimension of the order of D ≈ 1.87 suggest a
growth process via percolation clusters.
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